Search Results

Now showing 1 - 10 of 53
  • Publication
    Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium
    (2001-09-01) Simmons, Cameron
    The formation of attaching and effacing (A/E) lesions on gut enterocytes is central to the pathogenesis of enterohemorrhagic (EHEC) Escherichia coli, enteropathogenic E. coli (EPEC), and the rodent pathogen Citrobacter rodentium. Genes encoding A/E lesion formation map to a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Here we show that the LEE-encoded proteins EspA, EspB, Tir, and intimin are the targets of long-lived humoral immune responses in C. rodentium-infected mice. Mice infected with C. rodentium developed robust acquired immunity and were resistant to reinfection with wild-type C. rodentium or a C. rodentium derivative, DBS255(pCVD438), which expressed intimin derived from EPEC strain E2348/69. The receptor-binding domain of intimin polypeptides is located within the carboxy-terminal 280 amino acids (Int280). Mucosal and systemic vaccination regimens using enterotoxin-based adjuvants were employed to elicit immune responses to recombinant Int280alpha from EPEC strain E2348/69. Mice vaccinated subcutaneously with Int280alpha, in the absence of adjuvant, were significantly more resistant to oral challenge with DBS255(pCVD438) but not with wild-type C. rodentium. This type-specific immunity could not be overcome by employing an exposed, highly conserved domain of intimin (Int388-667) as a vaccine. These results show that anti-intimin immune responses can modulate the outcome of a C. rodentium infection and support the use of intimin as a component of a type-specific EPEC or EHEC vaccine.
  • Publication
    High Pro-Inflammatory Cytokine Secretion and Loss of High Avidity Cross-Reactive Cytotoxic T-Cells during the Course of Secondary Dengue Virus Infection
    (2007-12-05) Simmons, Cameron
    BACKGROUND: Dengue is one of the most important human diseases transmitted by an arthropod vector and the incidence of dengue virus infection has been increasing - over half the world's population now live in areas at risk of infection. Most infections are asymptomatic, but a subset of patients experience a potentially fatal shock syndrome characterised by plasma leakage. Severe forms of dengue are epidemiologically associated with repeated infection by more than one of the four dengue virus serotypes. Generally attributed to the phenomenon of antibody-dependent enhancement, recent observations indicate that T-cells may also influence disease phenotype. METHODS AND FINDINGS: Virus-specific cytotoxic T lymphocytes (CTL) showing high level cross reactivity between dengue serotypes could be expanded from blood samples taken during the acute phase of secondary dengue infection. These could not be detected in convalescence when only CTL populations demonstrating significant serotype specificity were identified. Dengue cross-reactive CTL clones derived from these patients were of higher avidity than serotype-specific clones and produced much higher levels of both type 1 and certain type 2 cytokines, many previously implicated in dengue pathogenesis. CONCLUSION: Dengue serotype cross-reactive CTL clones showing high avidity for antigen produce higher levels of inflammatory cytokines than serotype-specific clones. That such cells cannot be expanded from convalescent samples suggests that they may be depleted, perhaps as a consequence of activation-induced cell death. Such high avidity cross-reactive memory CTL may produce inflammatory cytokines during the course of secondary infection, contributing to the pathogenesis of vascular leak. These cells appear to be subsequently deleted leaving a more serotype-specific memory CTL pool. Further studies are needed to relate these cellular observations to disease phenotype in a large group of patients. If confirmed they have significant implications for understanding the role of virus-specific CTL in pathogenesis of dengue disease.
  • Publication
    Decision Tree Algorithms Predict the Diagnosis and Outcome of Dengue Fever in the Early Phase of Illness
    (2008-03-01) Simmons, Cameron
    BACKGROUND: Dengue is re-emerging throughout the tropical world, causing frequent recurrent epidemics. The initial clinical manifestation of dengue often is confused with other febrile states confounding both clinical management and disease surveillance. Evidence-based triage strategies that identify individuals likely to be in the early stages of dengue illness can direct patient stratification for clinical investigations, management, and virological surveillance. Here we report the identification of algorithms that differentiate dengue from other febrile illnesses in the primary care setting and predict severe disease in adults. METHODS AND FINDINGS: A total of 1,200 patients presenting in the first 72 hours of acute febrile illness were recruited and followed up for up to a 4-week period prospectively; 1,012 of these were recruited from Singapore and 188 from Vietnam. Of these, 364 were dengue RT-PCR positive; 173 had dengue fever, 171 had dengue hemorrhagic fever, and 20 had dengue shock syndrome as final diagnosis. Using a C4.5 decision tree classifier for analysis of all clinical, haematological, and virological data, we obtained a diagnostic algorithm that differentiates dengue from non-dengue febrile illness with an accuracy of 84.7%. The algorithm can be used differently in different disease prevalence to yield clinically useful positive and negative predictive values. Furthermore, an algorithm using platelet count, crossover threshold value of a real-time RT-PCR for dengue viral RNA, and presence of pre-existing anti-dengue IgG antibodies in sequential order identified cases with sensitivity and specificity of 78.2% and 80.2%, respectively, that eventually developed thrombocytopenia of 50,000 platelet/mm(3) or less, a level previously shown to be associated with haemorrhage and shock in adults with dengue fever. CONCLUSION: This study shows a proof-of-concept that decision algorithms using simple clinical and haematological parameters can predict diagnosis and prognosis of dengue disease, a finding that could prove useful in disease management and surveillance.
  • Publication
    Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza
    (2007-05-01) Simmons, Cameron
    BACKGROUND: New prophylactic and therapeutic strategies to combat human infections with highly pathogenic avian influenza (HPAI) H5N1 viruses are needed. We generated neutralizing anti-H5N1 human monoclonal antibodies (mAbs) and tested their efficacy for prophylaxis and therapy in a murine model of infection. METHODS AND FINDINGS: Using Epstein-Barr virus we immortalized memory B cells from Vietnamese adults who had recovered from infections with HPAI H5N1 viruses. Supernatants from B cell lines were screened in a virus neutralization assay. B cell lines secreting neutralizing antibodies were cloned and the mAbs purified. The cross-reactivity of these antibodies for different strains of H5N1 was tested in vitro by neutralization assays, and their prophylactic and therapeutic efficacy in vivo was tested in mice. In vitro, mAbs FLA3.14 and FLD20.19 neutralized both Clade I and Clade II H5N1 viruses, whilst FLA5.10 and FLD21.140 neutralized Clade I viruses only. In vivo, FLA3.14 and FLA5.10 conferred protection from lethality in mice challenged with A/Vietnam/1203/04 (H5N1) in a dose-dependent manner. mAb prophylaxis provided a statistically significant reduction in pulmonary virus titer, reduced associated inflammation in the lungs, and restricted extrapulmonary dissemination of the virus. Therapeutic doses of FLA3.14, FLA5.10, FLD20.19, and FLD21.140 provided robust protection from lethality at least up to 72 h postinfection with A/Vietnam/1203/04 (H5N1). mAbs FLA3.14, FLD21.140 and FLD20.19, but not FLA5.10, were also therapeutically active in vivo against the Clade II virus A/Indonesia/5/2005 (H5N1). CONCLUSIONS: These studies provide proof of concept that fully human mAbs with neutralizing activity can be rapidly generated from the peripheral blood of convalescent patients and that these mAbs are effective for the prevention and treatment of H5N1 infection in a mouse model. A panel of neutralizing, cross-reactive mAbs might be useful for prophylaxis or adjunctive treatment of human cases of H5N1 influenza.
  • Publication
    Increased frequencies of CD4(+) CD25(high) regulatory T cells in acute dengue infection
    (2007-05-14) Simmons, Cameron
    Dengue virus infection is an increasingly important tropical disease, causing 100 million cases each year. Symptoms range from mild febrile illness to severe hemorrhagic fever. The pathogenesis is incompletely understood, but immunopathology is thought to play a part, with antibody-dependent enhancement and massive immune activation of T cells and monocytes/macrophages leading to a disproportionate production of proinflammatory cytokines. We sought to investigate whether a defective population of regulatory T cells (T reg cells) could be contributing to immunopathology in severe dengue disease. CD4(+)CD25(high)FoxP3(+) T reg cells of patients with acute dengue infection of different severities showed a conventional phenotype. Unexpectedly, their capacity to suppress T cell proliferation and to secrete interleukin-10 was not altered. Moreover, T reg cells suppressed the production of vasoactive cytokines after dengue-specific stimulation. Furthermore, T reg cell frequencies and also T reg cell/effector T cell ratios were increased in patients with acute infection. A strong indication that a relative rise of T reg cell/effector T cell ratios is beneficial for disease outcome comes from patients with mild disease in which this ratio is significantly increased (P < 0.0001) in contrast to severe cases (P = 0.2145). We conclude that although T reg cells expand and function normally in acute dengue infection, their relative frequencies are insufficient to control the immunopathology of severe disease.
  • Publication
    Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever
    (2007-04-15) Simmons, Cameron
    Responses by peripheral blood leukocytes may contribute to the pathogenesis of dengue hemorrhagic fever (DHF). We used DNA microarrays to reveal transcriptional patterns in the blood of 14 adults with DHF. Acute DHF was defined by an abundance of transcripts from cell cycle- and endoplasmic reticulum (ER)-related genes, suggesting a proliferative response accompanied by ER stress. Transcript-abundance levels for immunoresponse-associated genes, including cell surface markers, immunoglobulin, and innate response elements, were also elevated. Twenty-four genes were identified for which transcript abundance distinguished patients with dengue shock syndrome (DSS) from those without DSS. All the gene transcripts associated with DSS, many of which are induced by type I interferons, were less abundant in patients with DSS than in those without DSS. To our knowledge, these data provide the first snapshot of gene-expression patterns in peripheral blood during acute dengue and suggest that DSS is associated with attenuation of selected aspects of the innate host response.
  • Publication
    Maternal antibody and viral factors in the pathogenesis of dengue virus in infants
    (2007-08-01) Simmons, Cameron
    The pathogenesis of dengue in infants is poorly understood. We postulated that dengue severity in infants would be positively associated with markers of viral burden and that maternally derived, neutralizing anti-dengue antibody would have decayed before the age at which infants with dengue presented to the hospital. In 75 Vietnamese infants with primary dengue, we found significant heterogeneity in viremia and NS1 antigenemia at hospital presentation, and these factors were independent of disease grade or continuous measures of disease severity. Neutralizing antibody titers, predicted in each infant at the time of their illness, suggested that the majority of infants (65%) experienced dengue hemorrhagic fever when the maternally derived neutralizing antibody titer had declined to <1 : 20. Collectively, these data have important implications for dengue vaccine research because they suggest that viral burden may not solely explain severe dengue in infants and that neutralizing antibody is a reasonable but not absolute marker of protective immunity in infants.
  • Publication
    The clinical benefit of adjunctive dexamethasone in tuberculous meningitis is not associated with measurable attenuation of peripheral or local immune responses
    (2005-07-01) Simmons, Cameron
    Outcome from tuberculous meningitis (TBM) is believed to be dependent on the severity of the intracerebral inflammatory response. We have recently shown that dexamethasone improved survival in adults with TBM and postulated that the clinical effect would be associated with a measurable systemic and intracerebral impact on immunological markers of inflammation. Prolonged inflammatory responses were detected in all TBM patients irrespective of treatment assignment (placebo or dexamethasone). The inflammatory response in the cerebrospinal fluid was characterized by a leukocytosis (predominantly CD3(+)CD4(+) T lymphocytes, phenotypically distinct from those in the peripheral blood), elevated concentrations of inflammatory and anti-inflammatory cytokines, chemokines, and evidence of prolonged blood-brain barrier dysfunction. Dexamethasone significantly modulated acute cerebrospinal fluid protein concentrations and marginally reduced IFN-gamma concentrations; other immunological and routine biochemical indices of inflammation were unaffected. Peripheral blood monocyte and T cell responses to Mycobacterium tuberculosis Ags were also unaffected. Dexamethasone does not appear to improve survival from TBM by attenuating immunological mediators of inflammation in the subarachnoid space or by suppressing peripheral T cell responses to mycobacterial Ags. These findings challenge previously held theories of corticosteroid action in this disease. An understanding of how dexamethasone acts in TBM may suggest novel and more effective treatment strategies.
  • Publication
    Pretreatment intracerebral and peripheral blood immune responses in Vietnamese adults with tuberculous meningitis: Diagnostic value and relationship to disease severity and outcome
    (2006-02-01) Simmons, Cameron
    Tuberculous meningitis (TBM) is the most devastating form of tuberculosis. Both intracerebral and peripheral blood immune responses may be relevant to pathogenesis, diagnosis, and outcome. In this study, the relationship between pretreatment host response, disease phenotype, and outcome in Vietnamese adults with TBM was examined. Before treatment, peripheral blood IFN-gamma ELISPOT responses to the Mycobacterium tuberculosis Ags ESAT-6, CFP-10, and purified protein derivative (PPD) were a poor diagnostic predictor of TBM. Cerebrospinal fluid IL-6 concentrations at presentation were independently associated with severe disease presentation, suggesting an immunological correlate of neurological damage before treatment. Surprisingly however, elevated cerebrospinal fluid inflammatory cytokines were not associated with death or disability in HIV-negative TBM patients at presentation. HIV coinfection attenuated multiple cerebrospinal fluid inflammatory indices. Low cerebrospinal fluid IFN-gamma concentrations were independently associated with death in HIV-positive TBM patients, implying that IFN-gamma contributes to immunity and survival. Collectively, these results reveal the effect of HIV coinfection on the pathogenesis of TBM and suggest that intracerebral immune responses, at least in HIV-negative cases, may not be as intimately associated with disease outcome as previously thought.
  • Publication
    Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections
    (2005-05-01) Simmons, Cameron
    T-cell responses to dengue viruses may be important in both protective immunity and pathogenesis. This study of 48 Vietnamese adults with secondary dengue virus infections defined the breadth and magnitude of peripheral T-cell responses to 260 overlapping peptide antigens derived from a dengue virus serotype 2 (DV2) isolate. Forty-seven different peptides evoked significant gamma interferon enzyme-linked immunospot (ELISPOT) assay responses in 39 patients; of these, 34 peptides contained potentially novel T-cell epitopes. NS3 and particularly NS3200-324 were important T-cell targets. The breadth and magnitude of ELISPOT responses to DV2 peptides were independent of the infecting dengue virus serotype, suggesting that cross-reactive T cells dominate the acute response during secondary infection. Acute ELISPOT responses were weakly correlated with the extent of hemoconcentration in individual patients but not with the nadir of thrombocytopenia or overall clinical disease grade. NS3556-564 and Env414-422 were identified as novel HLA-A*24 and B*07-restricted CD8+ T-cell epitopes, respectively. Acute T-cell responses to natural variants of Env414-422 and NS3556-564 were largely cross-reactive and peaked during disease convalescence. The results highlight the importance of NS3 and cross-reactive T cells during acute secondary infection but suggest that the overall breadth and magnitude of the T-cell response is not significantly related to clinical disease grade.