Search Results

Now showing 1 - 10 of 53
  • Publication
    Serial MRI to determine the effect of dexamethasone on the cerebral pathology of tuberculous meningitis: an observational study
    BACKGROUND: Adjunctive dexamethasone increases survival from tuberculous meningitis, but the underlying mechanism is unclear. We aimed to determine the effect of dexamethasone on cerebral MRI changes and their association with intracerebral inflammatory responses and clinical outcome in adults treated for tuberculous meningitis. METHODS: Cerebral MRI was undertaken, when possible, at diagnosis and after 60 days and 270 days of treatment in adults with tuberculous meningitis admitted to two hospitals in Vietnam. Patients were randomly assigned either dexamethasone (n=24) or placebo (n=19) and received 9 months of treatment with standard first-line antituberculosis drugs. We assessed associations between MRI findings, treatment allocation, and resolution of fever, coma, cerebrospinal fluid inflammation, and neurological outcome. FINDINGS: 83 scans were done for 43 patients: 19 given placebo, 24 given dexamethasone. Basal meningeal enhancement (82%) and hydrocephalus (77%) were the most common presenting findings. Fewer patients had hydrocephalus after 60 days of treatment with dexamethasone than after placebo treatment (p=0.217). Tuberculomas developed in 74% of patients during treatment and in equal proportions in the treatment groups; they were associated with long-term fever, but not relapse or poor clinical outcome. The basal ganglia were the most common site of infarction; the proportion with infarction after 60 days was halved in the dexamethasone group (27%vs 58%, p=0.130). INTERPRETATION: Dexamethasone may affect outcome from tuberculous meningitis by reducing hydrocephalus and preventing infarction. The effect may have been under-estimated because the most severe patients could not be scanned.
  • Publication
    Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia
    Avian influenza A (H5N1) viruses cause severe disease in humans, but the basis for their virulence remains unclear. In vitro and animal studies indicate that high and disseminated viral replication is important for disease pathogenesis. Laboratory experiments suggest that virus-induced cytokine dysregulation may contribute to disease severity. To assess the relevance of these findings for human disease, we performed virological and immunological studies in 18 individuals with H5N1 and 8 individuals infected with human influenza virus subtypes. Influenza H5N1 infection in humans is characterized by high pharyngeal virus loads and frequent detection of viral RNA in rectum and blood. Viral RNA in blood was present only in fatal H5N1 cases and was associated with higher pharyngeal viral loads. We observed low peripheral blood T-lymphocyte counts and high chemokine and cytokine levels in H5N1-infected individuals, particularly in those who died, and these correlated with pharyngeal viral loads. Genetic characterization of H5N1 viruses revealed mutations in the viral polymerase complex associated with mammalian adaptation and virulence. Our observations indicate that high viral load, and the resulting intense inflammatory responses, are central to influenza H5N1 pathogenesis. The focus of clinical management should be on preventing this intense cytokine response, by early diagnosis and effective antiviral treatment.
  • Publication
    Dual role for macrophages in vivo in pathogenesis and control of murine Salmonella enterica var. Typhimurium infections.
    Salmonella spp. are regarded as facultative intracellular bacterial pathogens which are found inside macrophages (Mphi) after i. v. infection. It is generally assumed that Mphi restrict the replication of the bacteria during infection. In this study we examined the in vivo activities of Mphi during experimental S. typhimurium infections, using a selective liposome-based Mphi elimination technique. Unexpectedly, elimination of Mphi prior to infection with virulent S. typhimurium decreased morbidity and mortality, suggesting that Mphi mediate the pathology caused by S. typhimurium. Removal of Mphi) during vaccination with attenuated S. typhimurium did not affect protection against challenge with virulent S. typhimurium, suggesting that Mphi are not required for the induction of protective immunity and that other cells must function as antigen-presenting cell to elicit T cell-mediated protection. However, Mphi appeared to be important effectors of protection against challenge infection since elimination of Mphi from vaccinated mice prior to challenge infection with virulent S. typhimurium significantly decreased protection. These results enhance our understanding of the control of S. typhimurium growth in vivo, and moreover suggest that Mphi play a major role in the pathology of virulent S. typhimurium infections. As such, these cells may present a novel target for therapeutic intervention.
  • Publication
    Antigenic Fingerprinting of H5N1 Avian Influenza Using Convalescent Sera and Monoclonal Antibodies Reveals Potential Vaccine and Diagnostic Targets
    BACKGROUND: Transmission of highly pathogenic avian H5N1 viruses from poultry to humans have raised fears of an impending influenza pandemic. Concerted efforts are underway to prepare effective vaccines and therapies including polyclonal or monoclonal antibodies against H5N1. Current efforts are hampered by the paucity of information on protective immune responses against avian influenza. Characterizing the B cell responses in convalescent individuals could help in the design of future vaccines and therapeutics. METHODS AND FINDINGS: To address this need, we generated whole-genome-fragment phage display libraries (GFPDL) expressing fragments of 15-350 amino acids covering all the proteins of A/Vietnam/1203/2004 (H5N1). These GFPDL were used to analyze neutralizing human monoclonal antibodies and sera of five individuals who had recovered from H5N1 infection. This approach led to the mapping of two broadly neutralizing human monoclonal antibodies with conformation-dependent epitopes. In H5N1 convalescent sera, we have identified several potentially protective H5N1-specific human antibody epitopes in H5 HA[(-10)-223], neuraminidase catalytic site, and M2 ectodomain. In addition, for the first time to our knowledge in humans, we identified strong reactivity against PB1-F2, a putative virulence factor, following H5N1 infection. Importantly, novel epitopes were identified, which were recognized by H5N1-convalescent sera but did not react with sera from control individuals (H5N1 naïve, H1N1 or H3N2 seropositive). CONCLUSION: This is the first study, to our knowledge, describing the complete antibody repertoire following H5N1 infection. Collectively, these data will contribute to rational vaccine design and new H5N1-specific serodiagnostic surveillance tools.
  • Publication
    Igh-6(-/-) (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar typhimurium and show impaired Th1 T-cell responses to Salmonella antigens
    In the present study we evaluated the role of B cells in acquired immunity to Salmonella infection by using gene-targeted B-cell-deficient innately susceptible mice on a C57BL/6 background (Igh-6(-/-)). Igh-6(-/-) mice immunized with a live, attenuated aroA Salmonella enterica serovar Typhimurium vaccine strain showed impaired long-term acquired resistance against the virulent serovar Typhimurium strain C5. Igh-6(-/-) mice were able to control a primary infection and to clear the inoculum from the reticuloendothelial system. However, Igh-6(-/-) mice, unlike Igh-6(+/+) C57BL/6 controls, did not survive an oral challenge with strain C5 at 4 months after vaccination. Transfer of immune serum did not restore resistance in Igh-6(-/-) mice. Total splenocytes and purified CD4(+) T cells obtained from Igh-6(-/-) mice 4 months after vaccination showed reduced ability to release Th1-type cytokines (interleukin 2 and gamma interferon) upon in vitro restimulation with serovar Typhimurium soluble cell extracts compared to cells obtained from Igh-6(+/+) C57BL/6 control mice. Therefore, the impaired resistance to oral challenge with virulent serovar Typhimurium observed in B-cell-deficient mice, which cannot be restored by passive transfer of Salmonella-immune serum, may be in part due to a reduced serovar Typhimurium-specific T-cell response following primary immunization.
  • Publication
    Intracellular adhesion molecule 1 plays a key role in acquired immunity to Salmonellosis
    This study investigated the role of intracellular adhesion molecule 1 (ICAM-1) during Salmonella enterica serovar Typhimurium infection of mice. We show that ICAM-1 is expressed in and around granulomas on day 4 of infection in wild-type mice. However, when naive ICAM-1(-/-) mice were challenged with a sublethal dose of serovar Typhimurium, there were no detectable differences in systemic bacterial burden over the first 9 days of infection compared to wild-type control mice. When mice were immunized with the S. enterica serovar Typhimurium vaccine strain SL2361 and then challenged with the virulent S. enterica serovar Typhimurium strain C5, 100% of the ICAM-1(-/-) mice succumbed to infection, compared to 30% of wild-type mice. T-cell responses, as measured by activation via interleukin-2 production, as well as antibody responses were comparable in the ICAM-1(-/-) and wild-type mice. Following challenge, counts in organs were significantly higher in the ICAM-1(-/-) mice, and histological examination of organs showed pathological differences. Strain SL3261-immunized wild-type mice had cellular infiltrate and normal granuloma formation in the liver and spleen on days 5 and 10 after challenge with strain C5. ICAM-1(-/-) mice had a similar infiltrate on day 5, whereas on day 10 the infiltrate was more widespread and there were fewer macrophages associated with the granulomas. High circulating levels of tumor necrosis factor alpha and gamma interferon, as well as a high burden of strain C5 in the blood, accompanied the differences in histopathology. In this study we show that ICAM-1 plays a critical role during rechallenge of immunized mice with virulent S. enterica serovar Typhimurium.
  • Publication
    Diagnostic Accuracy of NS1 ELISA and Lateral Flow Rapid Tests for Dengue Sensitivity, Specificity and Relationship to Viraemia and Antibody Responses
    BACKGROUND: Dengue is a public health problem in many countries. Rapid diagnosis of dengue can assist patient triage and management. Detection of the dengue viral protein, NS1, represents a new approach to dengue diagnosis. METHODOLOGY/PRINCIPAL FINDINGS: The sensitivity and specificity of the Platelia NS1 ELISA assay and an NS1 lateral flow rapid test (LFRT) were compared against a gold standard reference diagnostic algorithm in 138 Vietnamese children and adults. Overall, the Platelia NS1 ELISA was modestly more sensitive (82%) than the NS1 LFRT (72%) in confirmed dengue cases. Both ELISA and LFRT assays were more sensitive for primary than secondary dengue, and for specimens collected within 3 days of illness onset relative to later time points. The presence of measurable DENV-reactive IgG and to a lesser extent IgM in the test sample was associated with a significantly lower rate of NS1 detection in both assays. NS1 positivity was associated with the underlying viraemia, as NS1-positive samples had a significantly higher viraemia than NS1-negative samples matched for duration of illness. The Platelia and NS1 LFRT were 100% specific, being negative in all febrile patients without evidence of recent dengue, as well as in patients with enteric fever, malaria, Japanese encephalitis and leptospirosis. CONCLUSIONS/SIGNIFICANCE: Collectively, these data suggest NS1 assays deserve inclusion in the diagnostic evaluation of dengue patients, but with due consideration for the limitations in patients who present late in their illness or have a concomitant humoral immune response.
  • Publication
    Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium
    The formation of attaching and effacing (A/E) lesions on gut enterocytes is central to the pathogenesis of enterohemorrhagic (EHEC) Escherichia coli, enteropathogenic E. coli (EPEC), and the rodent pathogen Citrobacter rodentium. Genes encoding A/E lesion formation map to a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Here we show that the LEE-encoded proteins EspA, EspB, Tir, and intimin are the targets of long-lived humoral immune responses in C. rodentium-infected mice. Mice infected with C. rodentium developed robust acquired immunity and were resistant to reinfection with wild-type C. rodentium or a C. rodentium derivative, DBS255(pCVD438), which expressed intimin derived from EPEC strain E2348/69. The receptor-binding domain of intimin polypeptides is located within the carboxy-terminal 280 amino acids (Int280). Mucosal and systemic vaccination regimens using enterotoxin-based adjuvants were employed to elicit immune responses to recombinant Int280alpha from EPEC strain E2348/69. Mice vaccinated subcutaneously with Int280alpha, in the absence of adjuvant, were significantly more resistant to oral challenge with DBS255(pCVD438) but not with wild-type C. rodentium. This type-specific immunity could not be overcome by employing an exposed, highly conserved domain of intimin (Int388-667) as a vaccine. These results show that anti-intimin immune responses can modulate the outcome of a C. rodentium infection and support the use of intimin as a component of a type-specific EPEC or EHEC vaccine.
  • Publication
    Immunological serotype interactions and their effect on the epidemiological pattern of dengue
    Long-term epidemiological data reveal multi-annual fluctuations in the incidence of dengue fever and dengue haemorrhagic fever, as well as complex cyclical behaviour in the dynamics of the four serotypes of the dengue virus. It has previously been proposed that these patterns are due to the phenomenon of the so-called antibody-dependent enhancement (ADE) among dengue serotypes, whereby viral replication is increased during secondary infection with a heterologous serotype; however, recent studies have implied that this positive reinforcement cannot account for the temporal patterns of dengue and that some form of cross-immunity or external forcing is necessary. Here, we show that ADE alone can produce the observed periodicities and desynchronized oscillations of individual serotypes if its effects are decomposed into its two possible manifestations: enhancement of susceptibility to secondary infections and increased transmissibility from individuals suffering from secondary infections. This decomposition not only lowers the level of enhancement necessary for realistic disease patterns but also reduces the risk of stochastic extinction. Furthermore, our analyses reveal a time-lagged correlation between serotype dynamics and disease incidence rates, which could have important implications for understanding the irregular pattern of dengue epidemics.
  • Publication